

Journal of Organometallic Chemistry 533 (1997) 109-115

A synthetic, structural and NMR spectroscopic study on 1,3-distanna-2-chalcogena-[3]ferrocenophanes

Max Herberhold *, Udo Steffl, Wolfgang Milius, Bernd Wrackmeyer *

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 10 12 51, D-95440 Bayreuth, Germany

Received 20 August 1996

Abstract

Three synthetic routes to the first 1,3-distanna-2-chalcogena-[3]ferrocenophanes are described, and their ¹H, ¹³C, ⁷⁷Se, ¹¹⁹Sa and ¹²⁵Te NMR solution spectra are reported. The reaction of either 1,1'-bis(chlorodimethylstamyl)ferrocene (1) with the chalcogenide Li₂E (E = 0, S, Se, Te) or 1,1'-bis(dimethylstamyl)ferrocene (2) with the chalcogen E (E = 0, S, Se, Te) as well as the immethion of chalcogen into the tin-tin bond of 1,1,2,2-tetramethyl-1,2-distanna-[2]ferrocenophane (3) all give the corresponding 1,3-distanna-2-chalcogene [3]ferrocenophane, Fe(C₃H, SaMe₂)₂E (E = 0 (4), S (5). Se (6) and Te (7)), in reasonable yields (>50%). The X-ray structure determinations of 6 and 7 indicate that the size of the chalcogen has a decisive influence upon the geometry of the sandwich moiety. Thus, the cyclopentadienyl rings are both bent away from the SaESa bridge in 6 ($\alpha = 3.4^\circ$) and 7 ($\alpha = 4.3^\circ$). The rings adopt a nearly staggered conformation in the selenium complex 6 (twist angle $\tau = 27.5^\circ$) but are almost eclipsed in the two crystallographically independent molecules of the tellurium compound, 7A ($\tau = 4.8^\circ$) and 7B ($\tau = 4.4^\circ$).

Keywords: Ferrocenophanes; Tin-tin bond; NMR; Iron; X-ray diffraction

1. Introduction

Among the [3]ferrocenophanes containing beteroelements in the triatomic bridge [1], a series of 1,3-dichalcogena-2-stanna-[3]ferrocenophanes (with the chalcogens directly attached to the ring) has been obtained [2]. Recently, 1,1'-bis(chlorodimethylstannyl)ferrocene (1) and 1,1'-bis(dimethylstannyl)ferrocene (2) have been used for the synthesis of 1,2-distanna-[2]- (3) and 1,2,3tristanna-[3]ferrocenophane [3]. All three ferrocene derivatives 1-3 appeared to be promising candidates for the formation of 1,3-distanna-2-chalcogena-[3]ferrocenophanes. The present work describes the synthesis of the new [3]ferrocenophanes, $Fe(C_3H_4SnMe_2)_2E (E = O$ (4), S (5), Se (6) and Te (7)), which were characterised by multinuclear magnetic resonance measurements. The molecular structures of both the scienium and the tel-

Scheme 1. Symbetic routes to the 1.3-distance-2-chuloogena-[3]ferrocenophanes 4-7.

Corresponding authors.

Table 1

Data relevant to the single	crystal X-ray structure	analyses of 6 and 7
-----------------------------	-------------------------	---------------------

Parameter	6	7	
Crystal data			
Formula; M,	C14H20FeSeSn2; 560.5	C ₁₄ H ₂₀ FeTeSn ₂ ; 609.1	
Crystal habit	Platelet	Irregular	
Dimensions (mm ³)	0.45 × 0.30 × 0.08	$0.30 \times 0.25 \times 0.20$	
Crystal system; space group	Triclinic; P1	Triclinic; PÎ	
Unit cell dimensions			
a, b, c (Å)	6.602(2), 8.990(2), 15.427(3)	9.707(2), 13.609(2), 15.160(2)	
α, β, γ (deg)	92.61(3), 91.21(3), 107.79(3)	64.49(2), 88.93(2), 77.47(2)	
$V(A^3)$: Z: F(000)	870.3(4); 2; 528	1758.0(5); 4; 1128	
D_{-1} (g cm ⁻³)	2.139	2.301	
Absorption coefficient (mm ⁻¹)	5.744	5.243	
Diffractometer	Siemens P4, Mo K α ; $\lambda = 71.073$ pm	a, graphite monochromator	
Temperature (K); scan mode; range (deg)	296; ω ; 2.0 $\leq 2\vartheta \leq 55.0$	173; ω ; $2.0 \le 2\vartheta \le 55.0$	
No. of measured reflections	4757	9093	
Indep. reflections (int. R)	3781 (0.0436)	7728 (0.0237)	
No. of observed reflections (limit)	$3357 (F > 3.0\sigma(F))$	$7270 (F > 2.0\sigma(F))$	
Absorption correction	Semi-empirical (#-scans)	Semi-empirical (#-scans)	
Min./max. transmission	0.2614/0.6492	0.2350/0.2971	
Solution	Direct methods (program SHELXTL-PL	Lus)	
Refinement			
No. of refined parameters	164	326	
Final R; wR	0.0477; 0.0463	0.0282; 0.0230	
Weighting scheme w ⁻¹	$\sigma^2(F)$	$\sigma^2(F)$	
Residual electron density (e Å ⁻³)	1.46/-1.39	1.10/-0.96	

Table 2 Selected bond distances (pm) and angles (deg) for compounds 6 and 7

Fe(C ₅ H ₄ SaMe ₂) ₂ Se 6		Fe(C ₅ H ₄ SnMe ₂) ₂ Te * 7			
		7A		7B	
Sa(1)-Se	252.6(1)	Sn(1)-Te(1)	273.6(1)	Sn(3)-Te(2)	272.6(1)
Sa(2)-Se	253.5(1)	Sn(2)-Te(1)	273.6(1)	Sn(4)-Te(2)	273.2(1)
Se(1)C(1)	210.9(7)	Sn(1)C(1)	210.9(4)	Sn(3)C(15)	211.4(4)
Sn(1)-C(11)	213.9(9)	Sn(1)-C(11)	214.1(5)	Sn(3)C(25)	212.9(6)
Sn(1)-C(12)	213.3(11)	Sn(1)-C(12)	213.2(8)	Sn(3)C(26)	213.9(5)
Sm(2)C(6)	211.9(6)	Sn(2)-C(6)	212.4(4)	Sn(4)C(20)	212.2(4)
Sa(2)C(13)	213.9(11)	Sn(2)-C(13)	213.2(7)	Sn(4)C(27)	213.0(7)
Sa(2)C(14)	211.2(12)	Sn(2)C(14)	213.9(6)	Sn(4)C(28)	213.6(6)
Fe-center(1-5)	165.4	Fe(1)-center(1-5)	165.5	Fe(2)-center(15-19)	165.5
Fe-center(6-10)	165.3	Fe(1)-center(6-10)	165.5	Fe(2)-center(20-24)	165.4
Se-Sa(1)-C(1)	107.0(2)	Te(1)-Sn(1)-C(1)	109.9(1)	Te(2)-Sn(3)-C(15)	109.8(1)
Se-Sa(1)-C(11)	104.5(2)	Te(1)-Sn(1)-C(11)	106.6(2)	Te(2)-Sn(3)-C(25)	111.7(2)
Se-Sa(1)-C(12)	111.8(3)	Te(1)-Sn(1)-C(12)	110.0(1)	Te(2)-Sn(3)-C(26)	106.6(2)
C(1)-Sa(1)-C(11)	110.4(0)	C(1)-Sn(1)-C(11)	110.0(2)	C(15)-Sn(3)-C(25)	109.8(2)
C(1)-Se(1)-C(12)	109.1(3)	C(1)-Sn(1)-C(12)	108.8(2)	C(15)-Sn(3)-C(26)	107.3(2)
C(11)-Sa(1)-C(12)	114.1(4)	C(11)-Sn(1)-C(12)	111.4(3)	C(25)-Sn(3)-C(26)	111.4(2)
SeSa(2)C(6)	115.2(2)	Te(1)-Sn(2)C(6)	109.9(1)	Te(2)-Sn(4)-C(20)	111.4(1)
SeSe(2)C(13)	102_3(3)	Te(1)-Sn(2)-C(13)	111.0(1)	Te(2)-Sn(4)-C(27)	109.8(1)
Se-Sm(2)-C(14)	107.5(3)	Te(1)-Sr(2)-C(14)	107.5(2)	Tc(2)-Sn(4)-C(28)	107.3(2)
C(6)-Se(2)-C(13)	109.1(4)	C(6)-Sn(2)-C(13)	110.3(2)	C(20)-Sn(4)-C(27)	107.3(2)
C(6)-Sn(2)-C(14)	108.7(3)	C(6)-Sn(2)-C(14)	106.2(2)	C(20)-Sn(4)-C(28)	109.9(2)
C(13)-Sn(2)-C(14)	114.1(5)	C(13)-Sn(2)-C(14)	111.8(2)	C(27)-Sn(4)-C(28)	111.1(2)
Sa(1)-Se-Sa(2)	101.0(1)	Sm(1)-Te(1)-Sm(2)	92.5(1)	Sn(3)-Te(2)-Sn(4)	91.8(1)

^a The crystal of 7 contains two symmetrically independent molecules, 7A and 7B.

Fig. 1. Molecular structure of 1,3-distanna-2-selena-[3]serrocenophane (6).

lurium compound, 6 and 7 respectively, were determined by single crystal X-ray structure analyses.

2. Results and discussion

2.1. Synthesis

Three preparative routes to the [3]ferrocenophanes 4-7 are shown in Scheme 1; all three are useful for the synthesis of 4-7. Clean reactions are observed if 1,2distanaa-[2]ferrocenophane (3) is used as a starting material; in the cases of sulfur, selenium and tellurium, insertion into the tin-tin bond of 3 takes place quantitatively. The [3]ferrocenophanes 4-7 are orange crystalline solids, which are soluble in benzene, toluene and dichloromethane.

2.2. Molecular structures of the 1,3-distanna-2-chalcogena-[3]ferrocenophanes 6 and 7

Data relevant to the X-ray structure determinations of 6 and 7 are given in Table 1, 1 and selected boad lengths and angles are listed in Table 2. The molecular structures of 6 and 7 are shown in Figs. 1 and 2.

The geometry of the sandwich moiety, $Fe(C_3H_4-)_2$, is only slightly distorted in the [3]ferrocenophanes 6 and 7. The two cyclopentadienyl rings are almost parallel, the angle δ at iron (ring center-Fe-ring center) being 177.3° in 6 and 176.6° in 7A or 176.7° in 7B. The triatomic bridge is somewhat too large for the metallocene unit; therefore the cyclopentadienyl ring planes are slightly bent away from the bridge, the dihedral angle ('illt angle' α) between the planar cyclopentadi

Fig. 2. Comparison of the ring conformations of 6 and 7A (7B is closely similar to 7A).

Table 3 ¹H, ¹³C, ⁷⁷Se, ¹¹⁹Se and ¹²⁵Te NMR data for the ferrocenophanes 4–7 (in C_4D_4)

Parameter *	4	5	6	7
8 ¹ H(2,5)	4.06	4.09	4.10	4.10
³ J(Sa ¹ H(2,5))	10.4	11.0	11.1	11.0
δ ¹ H(3/4)	4.26	4.22	4.21	4.18
⁴ J(Sa ¹ H(2,4))	7.2	7.6	7.4	7.0
ð ⁱ H(SaMe)	0.37	0.45	0.51	0.61
² J(¹¹⁹ Sa ¹ H _{Ma})	60.5	58.4	57.6	56.6
δ ¹³ C(1)	72.1	71.2	71.7	70.7
1/(119Se13C(1))	520.0	507.5	491.1	466.5
³ /(SeESe ¹³ C(1))	5.1	9.0	9.3	9.0
² J(⁷⁷ SeSa ¹³ C(1))	—	—	5.9	
δ ¹³ C(2/5)	74.1	74.1	74.5	74.8
² J(Sm ¹³ C(2/5))	60.8	61.8	60.5	56.9
8 ¹³ C(3/4)	71.4	70.9	71.1	71.0
³ J(Sa¹³C(3/4))	47.0	47.4	45.8	43.6
8 ¹³ C(SaMe)	-4.4	-3.7	- 3.4	-3.4
¹ ./(¹¹⁹ Sm ¹³ C ₁₄₆)	439.2	383.0	364.1	336.8
³ /(SaESa ¹³ C _{Ma})	3.4	4.6	4.2	3.1
² J(⁷⁷ SeSa ¹³ C ₁₀)	—	—	6.5	_
² <i>J</i> (¹²³ TeSn ¹³ C ₁₀)	—	-	—	11.0
ð ¹¹⁹ Sm	64.6	66.5	28.1	-70.7
² /(¹¹⁹ SaE ¹¹⁷ Sa)	334.0 ^{PH}	188.1	204.8	206.9
J(119Sa77Sc)		—	1133.0	_
¹ J(¹²⁵ Te ¹¹⁹ Sa)	-	-	—	2971.4
ð ⁷⁷ Sc	_		- 549.0	_
8 ¹²⁵ Te	_	-	—	- 1250.0

J (Hz); if resolved, the coupling to 119Sa is given.

^b In CDCl, 306Hz.

¹ Further details of the two crystal structure analyses are available on request from the Fachiaformationszentrum Karlstwhe, Gesellschaft für wisaneschaftlich-technische Information mbHZ, D-75344 Eggenstein-Leopoldshaften, Germany, on quoting the depository numbers CSD-406432 and CSD-406433, the names of the authors and the journal citation.

Table 4				
14 13 C 77 Se	119 Sn and 125 Te 1	NMR data for 1-3 and	1 1'-bis(trimethylstannyl)ferroci	ene (8)

Parameter ^a	Fe(C ₅ H ₄ SnMe ₂ Cl) ₂ 1	$Fe(C_5H_4SnMe_2H)_2$ 2	Fe(C ₅ H ₄ SnMe ₂) ₂ 3	Fe(C ₅ H ₄ SnMe ₃) ₂ 8 [8]
$\delta^1 H(2/5)$	4.08	3.99	4.34	4.07
³ J(Sa ¹ H(2,5))	9.6	9.4	9.8	10.5
δ'H(3/4)	4.25	4.23	4.22	4.28
J(Sa ¹ H(3,4))	_	_		5.6
δ ¹ H(SnMe)	0.55	0.26	0.40	0.29
J(Sn'H,)	_	_	15.4	_
¹ /(¹ H ¹ H ₁)	_	2.2	_	_
J(119Sn ¹ H ₁₁₀)	60.9	57.9	50.2	56.0
δ ¹³ C(1)	70.7	65.8	77.8	69.2
J(¹¹⁹ Sn ¹³ C(1))	590.0	515.4	338.9	492.5
J(Sa ¹³ C _{Ma})	-	_	49.9	_
8 ¹³ C(2/5)	74.5	75.0	74.8	74.4
J(Su ¹³ C(2/5))	66.9	53.8	44.6	51.8
S ¹³ C(3/4)	72.0	71.4	69.5	71.2
J(Sa ¹³ C(3/4))	51.2	42.4	32.7	40.3
513C(SnMe)	-1.1	-7.5	-8.2	-8.6
J(Sa ¹³ C)	_		74.2	_
J(119Sn13Cm)	415.6	371.8	227.0	357.8
δ ¹¹⁹ Sn	125.5	- 102.4	-43.4	-4.2
J(¹¹⁹ Sn ¹¹⁷ Sn)		_	5274.0	

^a J (Hz); if resolved, the coupling to ¹¹⁹Sn is given.

eayl rings being 3.4° in 6 and 4.3° in both 7A and 7B. The ring-tin bond lies nearly in the plane of the corresponding cyclopentadienyl ring in 6 ($\beta_1 = 1^\circ$, $\beta_2 =$ 2.3°), whereas it is somewhat more bent out of this plane (away from Fe) in 7A ($\beta_1 = 5.5^\circ$, $\beta_2 = 7.5^\circ$) and 7B ($\beta_1 = 7.9^\circ$, $\beta_2 = 4.5^\circ$). The most significant difference between 6 and 7 lies in the conformations of the two rings in the ferrocene moieties. Whereas the rings are close to staggered in the selenium complex 6 (twist angle $\tau = 27.5^\circ$), they are close to eclipsed in 7A ($\tau =$ 4.8°) and 7B ($\tau = 4.4^\circ$); the ideal staggered and eclipsed conformations require 36° and 0° respectively. (For the definition of angles α , β , δ and τ see also Ref. [3].)

The bond distances in the SnESn bridge system correspond to uonnal single bonds, cf. [SeSnMe₂]₃ 253 pm av. [4] and [TeSnMe₂]₃ 275 pm av. [5]. The angles at selenium $(101.01)^{\circ}$ in 6) and tellurium

Selected NMR data of the bis(trimethylstannyl)chalcogenides 9-12, in C. D. solution

(92.5(1)° in 7A, 91.8(1)° in 7B) are also observed in the expected range; analogous angles are found in the 1,2,3-trichalcogena-[3][errocenophanes, $Fe(C_5H_4Se)_2Se$ (Se-Se-Se 100.7° [6]) and $Fe(C_5H_4Te)_Te$ (Te-Te-Te 91.6(1)° and 93.9(1)° in molecules A and B respectively [7]); the angles at Se (100.8° av. [4]) and Te (96° av. [5]) in the six-membered rings [ESnMe₂]₁ are quite similar.

2.3. NMR spectroscopy

NMR data of the new [3]ferrocenophanes 4–7 are given in Table 3, whereas Table 4 contains selected NMR data of 1–3 and of 1,1'-bis(trimethylstannyl)ferrocene (8), and Table 5 relevant NMR data of the bis(trimethylstannyl)chalcogenides 9–12 for comparison. Assignments of ¹H and ¹³C NMR signals were achieved as described previously [11]. A typical ¹H NMR spectrum

Parameter	(Me ₃ Sn) ₂ O 9 [9]	(Me ₃ Sn) ₂ S 10 [10]	(Me ₃ Sn) ₂ Se 11 [10]	(Me ₃ Sn) ₂ Te 12 [10]
δ ¹³ C(SnMe)	-1.9	- 2.5	-2.3	- 3.4
¹ J(¹¹⁹ Sa ¹³ C _M)	394.3	353.7	337.8	316.4
$^{3}J(SnESn^{13}C_{Mr})$	n.m. *	5.5	_	
${}^{2}J({}^{77}\text{SeSn}{}^{13}\text{C}_{Me})$		—	6.4	-
δ ¹¹⁹ Sa	124.1	87.1	42.7	- 68.2
² J(¹¹⁹ Sn ¹¹⁷ Sn)	347.3	215.8	232.7	226.8
¹ J(¹¹⁹ Sn ⁷⁷ Se)	_	_	1087.0	_
¹ J(¹²⁵ Te ¹¹⁹ Sn)		—	-	2817.0
δ ⁷⁷ Se		_	- 549.9	_
δ ¹²⁵ Τe	_	_	_	- 1232.1

n.m. = not measured.

Table 5

Fig. 3. 250 MHz ¹H NMR spectrum of 6 showing ^{117/119}Sn satellites as marked.

is shown in Fig. 3. Reaction mixtures are readily analyzed by 13 C NMR spectroscopy as shown in Fig. 4 for a mixture of 3 and 4. Mutual assignment of ¹H and ¹³C NMR signals follows from 2D 13 C/¹H heteronuclear shift correlations as shown in Figs. 5 and 6, together with the information on relative signs of coupling constants $J(^{117/19}$ Sn, 13 C) and $J(^{117/19}$ Sn, ¹H).

The NMR data set for the new [3]ferrocenophanes 4-7 is in full accordance with the proposed structure. The regular changes in both δ^{119} Sn values and coupling constants $J(1^{10}$ Sn, 1^{3} C_{Me}) (parallel to those in the series 9-12 in Table 5) as well as $J(1^{10}$ Sn, 1^{3} C(1)) indicate that the ferrocenophane structure does not enforce any particular strain on the Me₂Sn-E-SnMe₂ moiety, as is confirmed by the structural parameters for 6 and 7.

A linear relationship between the bond angle Me-Sn-Me (ϕ) and the coupling constant $|^{J}\mathcal{U}^{(19}\text{Sn}, |^{3}\text{C}_{Me}\rangle|$ has been proposed [13]: $|^{J}J| = 11.4\phi - 875$. This correlation does not hold for compounds 6 with $|^{J}J| = 364$. IHz and $\phi = 114.1^{\circ}$ ($\phi_{\text{calcd}} = 108.7^{\circ}$) and 7 with $|^{J}J| = 336.8$ Hz and $\phi = 111.4^{\circ}$ ($\phi_{\text{calcd}} = 106.3^{\circ}$). An

Fig. 4. 125.8 MHz 13 C(¹H) NMR spectrum of a reaction mixture of 3 and 4, recorded by using the reformed INEPT pulse sequence [12] based on 23 /(¹³C,¹H). The $^{117/19}$ Sn satellites are marked by asterisks. Ferrocene (1) is present as an impurity.

Fig. 5. Contour plot of the 62.9 MHz 2D ¹³C/¹H heteronuclear shift correlation of 7 showing the ¹³C(2,5) and ¹³C(3,4) resonances with cross-peaks according to J(^{117/119}Sn,¹³C) and J(^{117/119}Sn,¹⁴C) and J(¹

additional relationship between ϕ and $|^2 J (^{119} \text{Sn}.^1 \text{H}_{sb})|$ has also been proposed [13]: $\phi = 0.0161 |^2 J|^2 - 1.32|^2 J| + 133.4$. The calculated values $\phi_{\text{calcd}} = 111.0^{\circ}$ (6) and $\phi_{\text{calcd}} = 110.3^{\circ}$ (7) also differ somewhat from the experimental values of 114.1° (6) and 111.4° (7).

Geminal coupling constants ²J(¹¹⁹SnE¹¹⁷Sn) depend mainly on the bond angle Sn-E-Sn and on the nature of E. In order to discuss these data, the knowledge of the sign of ²J is required. In the cases of E = S [14,10],

Fig. 6. Constour plot of the 62.9 MHz 2D $^{13}C/^{1}H$ heteromaclear shift correlation of 7 showing the $^{13}C(1)$ resonance with cross-peaks according to $^{3}J(^{117/119}Sn,^{13}C(1))$ without tilt for $^{1}H(2,5)$ cross-peaks and with a small positive tilt for $^{1}H(2,4)$ (corresponding to alike signs of $^{3}J(^{117/119}Sn,^{13}C(1))$ and $^{4}J(^{117/119}Sn,^{14}(3,4))$.

Se [10] and Te [10], a negative sign of ²J(Sn,Sn) has been experimentally determined. In the case of E = O, a positive sign was proposed for R₃Sn-O-SnR₃, including derivatives with a linear Sn-O-Sn arrangement [15]. This is in agreement with the observed solvent dependence of ²J(Sn,Sn) in stannoxanes [9], where smaller values ²J(Sn,Sn) indicate a more acute bond angle Sn-O-Sn. However, a change of the sign of ²J(Sn,Sn) in the fragment Sn-E-Sn was not considered in the discussion of the relationship between ²J(Sn,Sn) and the bond angle Sn-E-Sn [16].

The magnitudes of the coupling constants ${}^{2}J({}^{119}\mathrm{Sn}, {}^{117}\mathrm{Sn})$ for 4-7 are similar to those for 9-12 (Table 5). In the case of 4, the solvent dependence of ${}^{2}J(\mathrm{Sn},\mathrm{Sn})$ is analogous to 9. Therefore, a positive sign of ${}^{2}J(\mathrm{Sn},\mathrm{Sn})$ is proposed for 4, although the coupling constants ${}^{2}J(\mathrm{Sn},\mathrm{Sn})$ are negative in 5-7.

3. Experimental section

3.1. General comments

All compounds were routinely handled under an atmosphere of Ar, and solvents were carefully dried and freshly distilled before use. Chromatography was carried out using columns (diameter 2-3 cm, length 30 cm) filled with degassed and Ar-saturated silica (Merck, Kieselgel 60, 60-200 mesh). The starting compounds 1,1'-bis(chlorodimethylstannyl)ferrocene (1) [3], 1,1'bis(dimethylstannyl)ferrocene (2) [3] and 1.2-tetramethyl-1,2-distanna-[2]ferrocenophane (3) [3], were prepared following literature procedures. Melting points: Büchi 510. EI (70eV) mass spectra: Finnigan MAT 8500. The most intense peak of the computer-simulated mass pattern is listed. NMR spectra: ¹H, ¹³C, ¹¹⁹Sn NMR: Bruker ARX 250, recorded for diluted solutions (ca. 5-10%) in 5 mm tubes at 25 ± 1 °C if not mentioned otherwise. Chemical shifts are given with respect to Me₄Si [δ^1 H(C₆D₅H) 7.15; δ^{13} C(C₆D₆) 128.0], $Me_4 Sn [\Xi(^{119}Sn) = 37.290665 MHz], Me_2 Se [\Xi(^{77}Se)]$ = 19.071523 MHz] and Me, Te $[\Xi^{(125}Te) =$ 31.5497 MHz].

3.2. 1,3-Bis(dimethylstanna)-2-chalcogena-[3]ferrocenophanes 4-7

3.2.1. From 1 and Li_2E (E = O,S.Se,Te); general procedure

A solution of 0.25 g (0.45 mmol) of 1 in 10 ml of thf is added to 0.45 mmol L_2E in 10 ml of thf, and the mixture is stirred for 2 h. The solvent thf is removed in vacuo and the residue is dissolved in hexane. Insoluble material is filtered off and the hexane solution is brought to dryness. 3.2.1.1. 1,3-Bis(dimethylstanna)-2-oxa-[3]ferrocenophane (4). Complex 4 was purified by sublimation to a cooling finger (15 °C) to give 0.21 g (94.2%) of an orange crystalline solid (m.p. 74 °C). EI MS: m/e (% rel. intensity) = 498 (80) [M⁺]; 483 (20) [M⁺ - Me]; 468 (100) [M⁺ - 2Me]; 334 (30) [M⁺ - SnMe₂O]; 304 (23) [Fe(C₅H₄),Sn⁺].

3.2.1.2. 1,3-Bis(dimethylstanna)-2-thia-[3]ferrocenophane (5). Complex 5 was purified by chromatography on silica (using dichloromethane for clution) to give 0.19 g (82%) of 5 as an orange crystalline solid (m.p. 75°C). EI MS: m/e (% rel. intensity) = 514 (100) [M⁺]; 499 (47) [M⁺ - Mc]; 484 (66) [M⁺ - 2Mc]; 334 (44) [M⁺ - SnMe₂S]; 304 (60) [Fe(C₃H₄)₂Sn⁺].

3.2.1.3. 1,3-Bis(dimethylstanna)-2-selena-[3]ferrocenophane (6). Complex 6 was purified by chromatography on silica (using dichloromethane-hexane (1/1) for elution) to give 0.22g (85%) of 6 as an orange crystalline solid (m.p. 85°C). El MS: m/e (% rel. intensity) = 560 (100) [M⁺]; 545 (24) [M⁺ - Me]; 530 (22) [M⁺ - 2Me]; 515 (20) [M⁺ - 3Me]; 334 (12) [M⁺ - SnMe₂Se]; 304 (22) [Fe(C₃H₄)₂Sn⁺].

3.2.1.4. 1,3-Bis(dimethylstannna)-2-tellura-[3]ferrocenophane (7). Complex 7 was purified by chromatography on silica (using dichloromethane-hexane (1/4) for elution) to give 0.08 g (28%) of 7 as an orange crystalline solid (m.p. 90°C). EI MS: m/e (% rel. intensity) = 610 (80) [M⁺]; 595 (70) [M⁺ - Me]; 580 (40) [M⁺ - 2Me]; 334 (84) [M⁺ - SnMe₂Te]; 304 (100) [Fe(C₁H₄)₂Sn⁺].

3.2.2. From 2 and elemental chalcogen; general procedure

A toluene solution (20 ml) of 0.1 g (0.21 mmol) of 2 is prepared and excess chalcogen is added in one portion. The mixture is heated to reflux for 12 h. Toluene is removed and the residue is dissolved in hexane. After filtration the hexane is evaporated to give the [3]ferrocenophanes 4-7 in yields up to 90%.

3.2.3. From 3 and elemental chalcogen

In analogy to the procedure described in Section 3.2.2, the reaction of 0.1 g (0.21 mmol) of 3 in 10 ml of toluene in the presence of excess sulfur, selenium or tellurium affords 0.1 g of 5 (91%), 0.11 g 6 (93.5%) and 0.10 g 7 (79%) respectively.

3.2.3.1. 1,3-Bis(dimethylstanna)-2-oxa-[3]ferrocenophane (4). Method 1: a solution of 0.1 g (0.21 mmol) of 3 in 10 ml of toluene was stirred in the presence of air for 12 h. Yield: 0.03 g (29%) 4.

Method 2: a solution of 0.1g (0.21 mmol) of 3 in

10 ml of thf was stirred in the presence of 5 mol% NaOEt under air. Yield: 0.04 g (38%) 4.

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- M. Herberhold, Ferrocene compounds containing heteroelements, in A. Togni and T. Hayashi (eds.), Ferrocenes, Homogenous Catalysis, Organic Synthesis, Material Science, VCH, Weinheim, 1995, p. 219.
- [2] M. Herberhold, M. Hübuer and B. Wrackmeyer, Z. Naturforsch. Teil B:, 48 (1993) 940.
- [3] M. Herberhold, U. Steffl, W. Milius and B. Wrackmeyer, Angew. Chem., 108 (1996) 1927; Angew. Chem. Int. Ed. Engl., 35 (1996) 1803.
- [4] A. Blecher, B. Mathiasch and T.N. Mitchell, J. Organomet. Chem., 184 (1980) 175. M. Draeger and B. Mathiasch, Z. Anorg. Allg. Chem., 470 (1980) 45.

- [5] A. Blecher and M. Draeger, Angew. Chem., 91 (1979) 740; Angew. Chem. Int. Ed. Engl., 91 (1979) 677.
- [6] R.F. Bryan, as mentioned in A.J. Blake, R.O. Gould and A.G. Osborne, J. Organomet. Chem., 308 (1986) 297.
- [7] M. Herberhold, P. Leitzer and U. Thewalt, Z. Naturforsch. Teil B:, 45 (1990) 1503.
- [8] F.H. Köhler, W.A. Geike and N. Hertkoru, J. Organomet. Chem., 334 (1987) 359.
- [9] T.P. Lockhart, W.F. Manders and F.E. Brinckman, J. Organomet. Chem., 286 (1985) 153. T.P. Lockhardt, Imorg. Chem., 28 (1989) 4265.
- B. Wrachmeyer, K. Bauer, G. Kehr and U. Dörfler, Main Group Met. Chem., 18 (1995) 1.
 B.E. Mann and B.F. Taylor, ¹³C NMR of Organometallic Com-
- [11] B.E. Mann and B.F. Taylor, ¹³C NMR of Organometallic Compounds, Academic Press, London, 1981. O. Howarth, in J. Mason (ed.), *Multinuclear NMR*, Plensm, New York, 1987, pp. 133-169.
- [12] G.A. Morris and R. Freeman, J. Am. Chem. Soc., 101 (1979) 760. G.A. Morris, J. Am. Chem. Soc., 102 (1980) 428. D.P. Burum and R.R. Ernst, J. Magn. Reson., 39 (1980) 163. A. Bax, J. Magn. Reson., 57 (1984) 314.
- [13] T.P. Lockhart and W.F. Manders, Inorg. Chem., 25 (1986) 892.
- [14] B. Wracknacyer and G. Kehr, Z. Naturforsch. Teil B., 49 (1994) 1407.
- [15] S. Kerschl, B. Wrackmeyer, D. Männig, H. Nöth and R. Staudigl, Z. Naturforsch. Teil B:, 42 (1987) 387.
- [16] T.P. Lockizan, H. Puff, W. Schuh, H. Reuter and T.N. Mitchell, J. Organomet. Chem., 366 (1989) 61.